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ABSTRACT
Data sparsity is a long-standing challenge for recommender sys-
tems based on collaborative filtering. A promising solution for this
problem is multi-context recommendation, i.e., leveraging users’
explicit or implicit feedback from multiple contexts. In multi-context
recommendation, various types of interactions between entities (users
and items) are combined to alleviate data sparsity of a single con-
text in a collective manner. Two issues are crucial for multi-context
recommendation: (1) How to differentiate context-specific factors
from entity-intrinsic factors shared across contexts? (2) How to
capture the salient phenomenon that some entities are insensitive to
contexts while others are remarkably context-dependent? Previous
methods either do not consider context-specific factors, or assume
that a context imposes equal influence on different entities, limiting
their capability of combating data sparsity problem by taking full
advantage of multiple contexts.

In this paper, we propose a context-adaptive matrix factorization
method for multi-context recommendation by simultaneously mod-
eling context-specific factors and entity-intrinsic factors in a unified
model. We learn an entity-intrinsic latent factor for every entity,
and a context-specific latent factor for every entity in each context.
Meanwhile, using a context-entity mixture parameter matrix we ex-
plicitly model the extent to which each context imposes influence
on each entity. Experiments on two real scenarios demonstrate that
our method consistently outperforms previous multi-context rec-
ommendation methods on all different sparsity levels. Such a con-
sistent performance promotion forms the unique superiority of our
method, enabling it to be a reliable model for multi-context recom-
mendation.
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1. INTRODUCTION
With the increasingly growing amount of information available

online, recommender system becomes a necessary tool to help users
efficiently find their desired items, e.g., movies [1], music [2], news [3],
books [4], online friends [5] and travel packages [6]. Personalized
recommender systems gain great success in industry by collecting
and analyzing users’ explicit or implicit feedback, generally repre-
sented as interactions between users and items. For example, users
offer explicit scores to movies they watched or books they read;
users listen to their favorite songs multiple times; users frequently
browse the products they potentially want to buy. Based on these
observed interactions, collaborative filtering is widely used to in-
fer users’ preference and to predict items they are likely to inter-
act with. Existing collaborative filtering methods could be classi-
fied into neighborhood-based methods [7] and model-based meth-
ods [8, 9]. Among those methods, matrix factorization [1] is the
mainstream technique in personalized recommender system.

Matrix factorization (MF) formalizes collaborative filtering into
a matrix completion problem, recovering an incomplete user-item
preference matrix according to observed interactions or ratings be-
tween users and items [1]. MF factorizes the preference matrix
into two low-rank matrices that represent latent factors for users
and items respectively. With the two latent factor matrices, rec-
ommendation problem is addressed simply by their inner product.
Recommendation accuracy of matrix factorization heavily depends
on observed preference matrix. Unfortunately, preference matrix
is often highly sparse in practical scenarios, forming a hard barrier
for most real-world recommender systems [10]. Moreover, pref-
erence matrix is unevenly distributed, i.e., a majority of inactive
users express preference on a small number of items and a ma-
jority of unpopular items get few feedbacks. Such a data sparsity
problem is particularly severe for newly-joining users and newly-
arriving items, forming the so-called cold-start problem. As the
number of users and items rapidly grows, the sparsity problem and
the cold-start problem become the bottleneck of modern recom-
mender systems in business.

Many efforts have been made to combat the long-standing data
sparsity problem. Existing methods could be roughly classified into
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Figure 1: Rating counts in two movie datasets.

two paradigms. The first focuses on improving recommendation
methods or models, dealing with data sparsity problem by introduc-
ing appropriate priors or regularization [11]. Although some im-
provements have been achieved, these methods quickly hit the limit
caused by data sparsity of single context. Therefore researchers
turn to multi-context recommendation, leveraging feedbacks or rat-
ings from multiple contexts to improve the recommendation accu-
racy in a particular context [12, 13, 14]. This is motivated by the
fact that entities (users or items) are always involved in multiple
contexts. For example, one user may express his/her preferences on
music at Last.fm and preferences on videos at YouTube; one movie
could receive ratings in different movie-rating websites, such as
Netflix and MovieLens. Moreover, the degree of data sparsity for
a user/item could be quite different across contexts. Figure 1 illus-
trates the distribution of rating counts for 140 randomly-sampled
movies occurring in two different datasets — Netflix and Movie-
Lens. Although the distribution of rating counts in the two datasets
as a whole is linearly correlated, several movies have remarkably
different rating counts in the two datasets. For example, the French
action thriller film ‘Le Professionnel’ has only a few ratings in Net-
flix but gets a lot of ratings in MovieLens, and the western adven-
ture film ‘Last of the Dogmen’ is popular in Netflix but cold in
MovieLens. For multi-context recommendation, it is expected that
users/items that have no or little data in the context of interest may
have data in other contexts that could be leveraged to improve the
recommendation in the target context.

Collective matrix factorization (CMF) was first proposed to ad-
dress the multi-context recommendation problem [12]. CMF as-
sumes that one entity (user or item) shares the same latent fac-
tor across different contexts. The global factor for each entity is
learned based on the observed interaction data from all the contexts
in which this entity is involved. CMF simply takes the observed in-
teractions in all contexts as being from a single one. Consequently,
in CMF, there is a danger that the context with high number of
observed interactions could dominate other contexts with few ob-
servations. This is problematic for multi-context recommendation
because the volume of interactions in different contexts could be
remarkably different in real scenario. To address this problem, lo-
calized matrix factorization (LMF) [13] and HeteroMF [14] were
proposed. In the two models, each entity has two latent factors,
i.e., a global latent factor shared across different contexts and a lo-
cal latent factor specific to each context. Context-specific factors
are viewed as being generated from the global one by multiplying
it with a context-specific transfer matrix. By modeling context-
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Figure 2: Rating distribution of two movies under two different
contexts, i.e., MovieLens and Netflix.

specific factors and context-independent factors separately, these
two models outperform CMF for entities that have spare obser-
vations in one context but lots of observations in other contexts.
However, their performance is limited by their underlying assump-
tion: the same context exerts the same influence to all entities in-
discriminately, reflected by the transfer matrix specific to each con-
text. Indeed, the influence of the same context to different entities
could be quite different. Figure 2 depicts the rating distribution
of two movies under two contexts. For movie ‘20,000 Leagues
Under the Sea’, the rating distribution is almost the same in these
two contexts, indicating that it is insusceptible to contexts. For
movie ‘Mad Dog Time’, on the other hand, its rating distribution is
highly affected by contexts. Neglecting the difference at the degree
to which contexts influence different entities, existing models fail
to fully, even improperly, capture the knowledge offered by multi-
context observations.

In this paper, we address two critical issues in multi-context
recommendation: (1) How to differentiate context-specific factors
from entity-intrinsic factors shared across contexts? (2) How to
capture such a salient phenomenon: some entities are insensitive to
contexts while others are remarkably context-dependent? We pro-
pose a context-adaptive matrix factorization (AdaMF) method, ad-
dressing the multi-context recommendation problem via simultane-
ously modeling context-specific factors and entity-intrinsic factors
in a unified model. We learn for every entity an entity-intrinsic la-
tent factor shared cross different contexts and a latent factor specific
to each context. Meanwhile, using a context-entity mixture param-
eter matrix we explicitly model the degree to which each context
imposes influence on each entity. We develop a Gaussian mixture
model to describe the interaction between users’ intrinsic factors
and users’ context-specific factors. Experiments on two real sce-
narios demonstrate that our method consistently outperforms pre-
vious methods for multi-context recommendation on all different
sparsity levels.

Our main contributions are summarized as follows:

• We propose a novel AdaMF method for multi-context rec-
ommendation, adaptively learning global entity-intrinsic fac-
tors shared across different contexts and context-specific fac-
tors. Compared with existing models, our model could flex-
ibly distinguish the context-specific interactions and context-
independent ones, improving the recommendation performance
for multi-context recommendation.

• We apply the AdaMF method in two real scenarios – an item-
aligned scenario where movies receive ratings in MovieLens
and Netflix, and a user-aligned scenario where users of Douban
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give ratings to three types of items, i.e., music, books, and
movies. Experimental results demonstrate that our method
consistently improves the prediction accuracy in both sce-
narios on all the sparsity levels.

This paper is organized as follows: we first give some prelim-
inaries about multi-context recommendation. Next, related works
are described in Section 3. In Section 4, we propose our model
and design an EM framework to train the model. In Section 5, we
present our experiments on two multi-context datasets, namely an
item-aligned context and a user-aligned context. Section 6 con-
cludes this paper.

2. PRELIMINARY
Let us consider L different contexts, each of which could repre-

sent a recommendation application. We use special indexing letters
to distinguish users from items: a user set U with M users and an
item set I withN items. These users and items are embedded in the
L contexts. We useR(l)

ij to denote the rating that user i gives to item
j in context l. All the rating information in context l is stored in a
context-specific rating matrixR(l). Typically,R(l) is highly sparse.
We denote all rating matrices asR = {R(1), R(2), ..., R(L)}. Then
the multi-context recommendation problem could be formalized as:

Multi-Context Recommendation: Observing the rating infor-
mation R from L different contexts, the user set U and item set I,
for a user-item pair (i, j) and a context l such thatR(l)

ij is unknown,

we predict R(l)
ij .

In real application, there are two typical scenarios of multi-context
recommendation, i.e., user-aligned scenario and item-aligned sce-
nario. For user-aligned scenario, users are involved in multiple con-
texts. For example, a user may register in multiple online social
networks, such as Facebook and Twitter. Even in one network, the
user could be involved in multiple contexts, reflecting their differ-
ent actions or feedbacks. For example, in Twitter, a user involves
himself in multiple contexts by following other users or forwarding
tweets. The other scenario is item-aligned. Taking movie recom-
mendation as an example, there are many movie rating resources,
such as Netflix, MovieLens, and IMDB. With movies’ names, re-
lease date, actors, directors, and other information, we can identify
movies that appear in multiple contexts.

What is a context?
Context is a multi-faceted concept across different research disci-
plines. For context-aware recommender systems (CARS) [15, 16],
the term “context” refers to the contextual information when a user
takes an action on an item, e.g., rating a movie. Contextual in-
formation can be explicit, like time, location, and mood. CARS
aims to incorporate these explicit information into recommenda-
tion models.

The context considered in this paper refers to the data source of
users’ (items’) information. In the real world, users’ and items’ in-
formation is decentralized into multiple data sources, which could
be considered as a context for the users and items involved. Some
related works considered cross-domain recommendation [17, 18], a
special scenario for multi-context problem where users are aligned
across different contexts and items are heterogenous in different
contexts. The definition of multi-context recommendation is more
general, since items could be homogenous across different con-
texts. To summarize, the key point of multi-context recommen-
dation is the method of combining the information from different

contexts, where items from different contexts could be heteroge-
nous or homogeneous.

Matrix Factorization
Matrix factorization (MF) is one of the state-of-the-art techniques
in collaborative filtering. MF was proposed to make prediction for
a single user-item rating matrix under single-context scenario. In
MF, each user/item is associated with a low-dimensional latent fac-
tor. Users’ latent factor vectors are stored in matrix U , where latent
factor of user i is the ith column of matrix U , denoted by Ui. The
latent factor Vj of item j is the jth column of the item factor matrix
V . The rating of user-item pair (i, j) is modeled by a probabilistic
model with Gaussian observation noise. The conditional distribu-
tion over observed rating matrix R as

p(R|U, V, σ2) =

M∏
i=1

N∏
j=1

[
N (Rij |UTi Vj , σ2)

]Iij
, (1)

where N (x|µ, σ2) is the probability density function of the Gaus-
sian distribution with mean µ and variance σ2, and Iij is an indi-
cator function that reflects whether user i rated item j. Generally,
spherical Gaussian priors are placed on user and item factor vec-
tors:

p(U |σ2
u) =

M∏
i=1

(Ui|~0, σ2
uI), (2)

p(V |σ2
v) =

N∏
j=1

(Vj |~0, σ2
vI). (3)

Figure 3(a) shows the graphical model of matrix factorization. The
latent factors of users and items are inferred in the learning phase
using the observed rating matrix. Typically, stochastic gradient de-
scent learning method is used. To predict the rating of user i on
item j, the inner product of latent factor vectors Ui and Vj is com-
puted. Our AdaMF model is built on matrix factorization.

3. RELATED WORKS

3.1 Recommendation with Side Information
Former researchers tried to solve data sparsity problem and cold-

start problem by involving new information sources such as so-
cial relationship and taxonomy information. For example, Ma [19]
and Liu [20] included social network information to improve the
accuracy of recommender systems. In these works, social infor-
mation is incorporated into recommendation models as regulariza-
tion terms, constraining taste difference between a user and his/her
friends. Noam [2] and Weng [21] used taxonomy information on
the item side. Noam extended the matrix factorization model by
incorporating a rich bias model with terms that capture informa-
tion from the taxonomy of items. Weng modified the similarity
measurement with the item taxonomy information, improving the
traditional neighborhood-based recommender system.

Recently, some general frameworks are proposed to incorporate
multiple kinds of information across multiple contexts. Berkovsky
extended the neighborhood-based models into the multi-context sce-
nario [22]. Similarity between users and items are calculated by
assembling all the information across all the contexts. Since this
work is only an simple extension of neighborhood-based models,
the improvement is limited. Chen proposed SVDFeature, a feature-
based matrix factorization framework [23]. The feature-based set-
ting allows to build factorization models, incorporating side infor-
mation like temporal dynamics, neighborhood relationship, and hi-
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erarchical information. Xiao solved the recommendation problem
in a heterogeneous information network [24]. Using the concept
of meta-path to construct many different user-item preference ma-
trices, they built recommendation algorithm based on these matri-
ces separately. The final results are formulated by combining all
these preference matrices using a linear model. However, side-
information, both from user-side and item-side, is hard to get in
many real world applications.

3.2 Transfer Learning
Multi-context recommendation problem could also be done by

transfer learning, which transfers the knowledge from some auxil-
iary data source to a target data source [25]. Pan considered a col-
lective factorization model to transfer rating knowledge from some
auxiliary data source in binary form to a target numerical rating
matrix [26]. Li considered a Codebook transfer (CBT) algorithm
under the scenario to transfer rating information across different
domains [17]. Auxiliary rating matrix is first compressed into an
informative and yet compact cluster-level rating pattern represen-
tation referred to as a codebook, and then the target rating matrix
is reconstructed by expanding the codebook. However, the hard
clustering constraint greatly reduces the expressive power of CBT.
A generative model is introduced in [27], relaxing the constraints
in CBT from hard clustering to soft clustering using a probabilis-
tic graphical model. In our model, all rating matrices in different
contexts are factorized simultaneously, without the need to explic-
itly distinguish these matrices into auxiliary and target ones. The
knowledge is transferred on two directions for all these matrices.

3.3 Collective Matrix Factorization
As discussed before, matrix factorization is proposed for sin-

gle context, where only one rating matrix is considered. In multi-
context recommender system, users (items) will be involved in in-
teractions across multiple contexts. Factorizing the rating matrix in
each context separately would not take advantage of any correla-
tion between contexts. We use MF as one of our baseline model in
our experiments.

There are some related works of multi-context recommendation
based on direct extension of matrix factorization model. Collective
matrix factorization (CMF) is proposed by Singh and Gordon [12]
to deal with multi-context data. CMF decomposes the rating matrix
in each context into a product of two latent factor matrices, repre-
senting users’ and items’ latent interest space respectively. When-
ever one entity participates into more than one context, the latent
factor for the entity is shared across all contexts. Fig 3(b) shows the
probabilistic graphical model of CMF. In this model, latent factors
of users and items are shared in all different contexts.

In CMF, the latent factor for an entity is learned based on the
observed ratings from the contexts in which the entity participates.
However, there is one issue with CMF that objects share the same
latent factor across different contexts. This is claimed to be prob-
lematic in [13, 14] in two aspects. Firstly, latent factors for objects
that are cold in a context will be learned mainly based on the data
from other contexts where it is not cold. Consequently, latent fac-
tors for the cold objects are not properly learned. Secondly, the
latent factors for objects participating in multi-context are learned
mainly based on the dominating context and the dominated context
has little effect on the learned latent factors. LMF and HeteroMF
models are proposed to tackle these problems. In both of these two
models, each entity has one global latent factor. For each context,
there is a transfer matrix to transfer the global latent factor into the
context-specific latent factor. The probabilistic graphical model of
HeteroMF is shown in Fig 3(c). Just as the probabilistic graphical

model of CMF, there are L contexts, rating for user-item pair (i, j)

in the lth context is labeled by R(l)
ij . For the ith user, the global

factor is Ui, and for each item there is a global factor Vj . For each
context and the entity (namely, user and item) type, there is a trans-
fer matrix to model the influence of context. The local factor is the
result of the interaction between the transfer matrix and the global
factor. Taking user-side as an example, the local factor for the ith
user in the lth context is generated by the product of the global
factor and a transfer matrix M l

u. Following the notation in the pre-
liminary, the probability distribution of the global and local factors
of the ith user are:

Ui ∼ N (~0, σ2
uI),

U
(l)
i ∼ N (M l

uUi, σ
2
u,lI).

(4)

The definition of the global factor and local factor of the items
are just the same as the users. The underlying assumption of mod-
eling the context as a transfer matrix is that the effect of one context
to all objects in the context is the same. We relax this assumption
by directly modeling the context-specific factor of one entity in a
given context. The final local factor for one entity is the result of
a mixture interaction between the context-specific factor and the
global factor. The parameters of the mixture model are adaptively
learned from the data.

4. AdaMF
In this section we propose AdaMF, a context-adaptive matrix

factorization model, to address multi-context recommendation. Con-
sider M users and N items involved in L different contexts. Each
context l is associated with a preference matrix R(l), whose ele-
ment R(l)

ij describes the preference (usually a rating) of user i on

item j. Our task is to predict the missing value R(l)
ij .

As shown in Figure 3(d), AdaMF predicts a missing preference
R

(l)
ij based on latent factors representing user i and item j. Dif-

ferent from a standard matrix factorization model that uses one la-
tent factor for each user/item, a sharing-user version of AdaMF
uses multiple factors to describe each user, representing her intrin-
sic preference and context-specific interests respectively, in a sce-
nario where different contexts share an identical set of users. A
sharing-item version of AdaMF uses multiple factors to describe
each item, representing its intrinsic quality and context-specific
quality respectively. Here, as an example, we discuss the sharing-
item version of AdaMF without loss of generalization. Specifically,
each user i is assigned with a latent factor Ui while each item j is
assigned with multiple latent factors, including an entity-intrinsic
factor Vj related to its inherit property, and a context-specific fac-
tor V (l)

j associated with each context l. A ratingR(l)
ij is then drawn

from a mixture of two Gaussian distributions, with mean values of
UTi Vj and UTi V

(l)
j , reflecting the preference of user i on the entity-

intrinsic and context-specific part of item j respectively. Those
two distributions are mixed with an item-context mixture param-
eter π(l)

j , written as

P (R
(l)
ij |Ui, Vj , V

(l)
j , π

(l)
j ) = π

(l)
j N (R

(l)
ij |U

T
i V

(l)
j , σl

2)

+(1− π(l)
j )N (R

(l)
ij |U

T
i Vj , σl

2).
(5)
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We assume zero-mean spherical Gaussian priors for all latent
factors

p(Ui|σu) = N (Ui|~0, σ2
uI),

p(V
(l)
j |σv,l) = N (V

(l)
j |~0, σ

2
v,lI),

p(Vj |σv) = N (Vj |~0, σ2
vI),

where I denotes an identity matrix.
We introduce a latent Bernoulli variable Z(l)

ij ∼ Bern(π
(l)
j ).

Z
(l)
ij = 0 indicates that the rating R(l)

ij is drawn from the distribu-

tion based on the entity-intrinsic factor, while Z(l)
ij = 1 indicates

that the context-specific factor is used.
The joint distribution of R(l)

ij and Z(l)
ij is as follows,

P (R
(l)
ij , Z

(l)
ij |Ui, V

(l)
j , Vj , π

(l)
j )

=
(
π
(l)
j N (R

(l)
ij |U

T
i V

(l)
j , σl

2)
)Z(l)

ij

·
(

(1− π(l)
j )N (R

(l)
ij |U

T
i Vj , σ

2
l )
)(1−Z(l)

ij

)
.

Accordingly, the joint likelihood of observations and latent vari-
ables of the whole dataset could be written as

P (R,Z,U, V,
⋃
l

V (l)|π,Ω) =
∏
l

P (R(l), Z(l)|U, V, V (l), π(l), σl)∏
i

P (Ui|σu)
∏
j

P (Vj |σv)
∏
l

∏
j

P (V
(l)
j |σv,l),

where R = {R(l)
ij }, Z = {Z(l)

ij }, U = {Ui}, V = {Vi}, V (l) =

{V (l)
j }, and Ω = {σu, σv,

⋃
l σv,l} is the variance parameter set

of the model, π = {π(l)} is a mixture parameter matrix. Here, π(l)

is the mixture parameter vector of items in context l.

4.1 Inference
We use an expectation maximization (EM) algorithm to infer

model parameters and latent factors by maximizing the logarithmic

likelihood L of the whole dataset,

L =

∑
l

∑
i

∑
j

Z(l)
ij

log π
(l)
j −

1

2


(
R

(l)
ij − U

T
i V

(l)
j

)2
σ2
l

+ log σ2
l




+
(

1− Z(l)
ij

)log
(

1− π(l)
j

)
− 1

2
(

(
R

(l)
ij − U

T
i Vj

)2
σ2
l

+ log σ2
l )



Ilij

− 1

2

∑
i

1

σu
||Ui||2F −

1

2

∑
j

1

σv
||Vj ||2F −

1

2

∑
l

∑
j

1

σv,l
||V (l)

j ||
2
F ,

(6)

where Ili,j = 1 if user i has ratings of item j in context l; Ili,j = 0

otherwise. || · ||2F denotes the Frobenius norm. In the E-step, we
compute the expected logarithmic likelihood with respect to the
mixture parameters of items and latent variables. In the M-step, we
maximize that expected likelihood of the whole dataset. The two
steps are repeated alternately until convergence.

4.1.1 E-step
In the E-step, we use the current mixture parameter values π and

latent factors to find the posterior distribution of the latent variables
Z. We then use this posterior distribution to find the expectation of
the complete-data logarithmic likelihood evaluated according to the
mixture parameters and latent factors.

The expected values (responsibility) of Z(l)
ij is evaluated as fol-

low,

γ(Z
(l)
ij ) = E[Z

(l)
ij ]

=
π
(l)
j · N (R

(l)
ij |U

T
i V

(l)
j , σ2

l )

π
(l)
j · N (Rij |UTi V

(l)
j , σ2

l ) + (1− π(l)
j ) · N (R

(l)
ij |UTi Vj , σ2

l )

=
1

1 +
1−π(l)

j

π
(l)
j

· e
−(R

(l)
ij

−UT
i
Vj)

2
/σ2
l

e
−(R

(l)
ij

−UT
i
V

(l)
j

)
2
/σ2
l

.

(7)
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The expected log-likelihood is computed as follows,

EZ [L] =∑
l

∑
i

∑
j

(
γ
(
Z

(l)
ij

)
log π

(l)
j +
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Z
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log
(
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∑
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1

σv
||Vj ||2F

− 1

2

∑
l

∑
j

1

σv,l
||V (l)

j ||
2
F .

(8)

4.1.2 M-step
In the M-step, we maximize the expected log-likelihood of the

complete dataset. Note that the expected log-likelihood could be
divided into two parts. The first part only involves the mixture
parameters π(l)

j , which could be estimated by

π
(l)
j =

∑
i(γ(Z

(l)
ij ))I

l
ij∑

i I
l
ij

. (9)

The second part of the objective function with respect to the la-
tent variables is maximized by the stochastic gradient descent strat-
egy (SGD) with a tiny update step η. Just as what was done in [9],
maximizing the second part of the objective function is equivalent
to minimizing the sum-of-squared-errors objective function with
quadratic regularization terms, written as

E =
∑
l

∑
i

∑
j

Ilij{γ(Z
(l)
ij )(R

(l)
ij − U

T
i V

(l)
j )2

+ (1− γ(Z
(l)
ij ))(R

(l)
ij − U

T
i Vj)

2}

+ λu
∑
i

||Ui||2F + λv
∑
j

||Vj ||2F

+
∑
l

λv,l
∑
j

||V (l)
j ||

2
F + C.

(10)

For simplicity, we set all the σl and σv,l as the same for all con-
texts: so λu = σ2

l /σ
2
u, λv = σ2

l /σ
2
v , λv,l = σ2

l /σ
2
v,l. We set

λ = {λu, λv,
⋃
l λv,l} as the regularization parameters set, and C

is the constant term.
For each rating in one context R(l)

ij , we update for Ui, Vj , V
(l)
j

leveraging gradients,

Ui ← Ui − η ·
(
γ(Z

(l)
ij )(UTi V

(l)
j −R(l)

ij )V
(l)
j

+ (1− γ(Z
(l)
ij ))(UTi Vj −R

(l)
ij )Vj + λuUi

)
,

Vj ← Vj − η ·
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ij )Ui + λvVj
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,
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(l)
ij )(UTi V

(l)
j −R(l)

ij )Ui + λv,lV
(l)
j
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.

(11)

The framework of the whole algorithm is formalized in Algo-
rithm 1.

After inference, we predict an unobserved rating of user i on
item j in context l with its expectation,

R̂
(l)
ij = π

(l)
j · U

T
i V

(l)
j + (1− π(l)

j ) · UTi Vj .

Algorithm 1 AdaMF
[U, V,

⋃
l V

(l), π] = AdaMF (R, η, λ)

E-Step:
For all observed user-item pairs (i, j) in all contexts:
Evaluate P (Z

(l)
ij |R

(l)
ij , Ui, Vj , V

(l)
j ) = γ(Z

(l)
ij )

M-Step:
Maximize EZ [L] with respect of U, V,

⋃
l V

(l), π
Estimate π by Eq. (9)
SGD used in this step:

For one rating pair in one context (i, j, l), update the latent
factors and parameters Ui,Vj ,V

(l)
j by Eq. (11)

Repeated until convergence.

5. EXPERIMENTS
AdaMF is evaluated with two real-world datasets, compared with

mainstream baselines. The MovieLens-Netflix dataset contains users
and aligned movies in two contexts corresponding to two public
benchmark datasets from Netflix Prize1 and MovieLens project2.
5, 871 movies are aligned by IMDB meta information after data
cleaning. Since there are much fewer MovieLens users than Net-
flix users, we sampled 70, 132 users from Netflix for balancing two
contexts. The Douban dataset contains items and aligned users in
three contexts, namely books, movies, and music. It is crawled
from an online social network Douban3 where users rate books,
movies, and music [28]. We remove inactive users with less than 5
items, and obtain 10, 000 users and their ratings. Statistics of the
two datasets are shown in Table 1 and Table 2.

Table 1: Statistics of MovieLens-Netflix dataset
Statistics MovieLens Netflix

Num of movies 5,871 5,871
Num of users 69,258 70,132

Num of ratings 7,891,832 11,658,783

Each dataset is split into a 80% training set and a 20% testing set.
The dimension of the latent factors are chosen as 20, 50 and 100.
In the training phase, we set all regularization parameters as 0.01,
although later we empirically find that our model is insensitive to
those parameters. The training data is split into 5 parts to do 5-fold
cross validation, determining when we stop the learning phase. In
the testing phase, we evaluate prediction performance of AdaMF
using root mean squared error (RMSE) as,

RMSE =

√√√√∑Rij∈Rtesting (Rij − R̂ij)2

|Rtesting|
,

whereRij denotes the actual rating that user i posts to item j, R̂ij is
the predicted rating, and Rtesting denotes the ratings in the testing
set.

Besides the rating-based metric RMSE, we also considered a
ranking-based metric, mean average precision (MAP). Given all
the candidate items, we generate a recommendation list L for each
user by ranking all the items in a descending order according to the
predicted rating score. Then, the top-K average precision (AP@K)

1http://www.netflixprize.com/
2http://www.movielens.org/
3http://www.douban.com/
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Table 2: Statistics of Douban dataset
Statistics Movie Music Book

Num of users 10,000 10,000 10,000
Num of items 25,342 78,133 51,204

Num of ratings 2,287,712 1,060,704 832,103

is defined as

AP@K(u) =

∑K
j=1 P (j)I(Lj)∑K
j=1 I(Lj)

,

P (j) is the precision of the recommendation list at position j,
I(Lj) is the function to indicate if the jth item in the list is pre-
ferred by the user. In our experiments, we set the highest rated item
as the preferred items for one user. K is set as 5 in our experiments.
We evaluate recommendation method using the mean AP over all
users, i.e.,

MAP =

∑M
i=1AP@K(i)

M
,

where M is the number of users.
Three baseline methods are:

• Matrix Factorization (MF): for each context, latent factors
of users and items are learned using standard matrix factor-
ization method with regularization.

• Collective matrix factorization (CMF): each user or item
has a context-sharing latent factor.

• HeteroMF: each entity has a global latent factor shared across
contexts. Context-dependent factor for each entity is gener-
ated from the global one by multiplying it with a context-
specific transfer matrix. This model assumes that the same
context exerts the same influence to all entities indiscrimi-
nately.

5.1 Prediction Performance
We first compare our algorithm with baseline methods on the

whole dataset. Table 3 and table 4 show the performance of all
these methods on the movie-aligned dataset. On the two different
movie contexts, our method consistently outperforms all the base-
lines on all the tested number of dimensions. As the dimension
of latent factors increases, the improvement becomes more signifi-
cant.

Table 5 and table 6 show the performance of all the methods
on the user-aligned dataset. As there are three domains of items

Table 3: RMSE on MovieLens-Netflix dataset
D Models MovieLens Netflix

20

MF 0.8051 0.8334
CMF 0.7986 (-0.81%) 0.8330 (-0.05%)

HeteroMF 0.7937 (-1.42%) 0.8315 (-0.23%)
AdaMF 0.7907* (-1.79%) 0.8296* (-0.46%)

50

MF 0.8023 0.8321
CMF 0.7957 (-0.81%) 0.8309 (-0.14%)

HeteroMF 0.7917 (-1.32%) 0.8300 (-0.25%)
AdaMF 0.7859** (-2.04%) 0.8245** (-0.91%)

100

MF 0.7990 0.8303
CMF 0.7928 (-0.78%) 0.8283 (-0.24%)

HeteroMF 0.7895 (-1.18%) 0.8280 (-0.27%)
AdaMF 0.7821** (-2.12%) 0.8203** (-1.20%)

Significantly outperforms HeteroMF at the:
** 0.01 and * 0.05 level, paired t-test

Table 4: MAP on MovieLens-Netflix dataset
D Models MovieLens Netflix

20

MF 0.6247 0.6885
CMF 0.6290 (+0.68%) 0.6890 (+0.07%)

HeteroMF 0.6320 (+1.16%) 0.6898 (+0.18%)
AdaMF 0.6404** (+2.50%) 0.6930** (+0.65%)

50

MF 0.6279 0.6902
CMF 0.6331 (+0.82%) 0.6910 (+0.11%)

HeteroMF 0.6355 (+1.21%) 0.6912 (+0.14%)
AdaMF 0.6450** (+2.72%) 0.6962** (+0.87%)

100

MF 0.6299 0.6925
CMF 0.6352 (+0.84%) 0.6934 (+0.13%)

HeteroMF 0.6380 (+1.28%) 0.6937 (+0.17%)
AdaMF 0.6490** (+3.03%) 0.7001** (+1.09%)

Significantly outperforms HeteroMF at the:
** 0.01 and * 0.05 level, paired t-test

in Douban dataset, we conduct experiments on three scenarios:
movie-book, movie-music, and book-music respectively. The re-
sults show that our AdaMF model outperforms other baselines on
all the three scenarios. However, the improvement of AdaMF is not
always significant. For example, the improvement of music recom-
mendation in book-music scenario is not as significant as that in
movie-music scenario. This phenomenon may be related to corre-
lation between these domains.

5.2 Against Sparsity
Due to the imbalance problem in observations, users/items with

extremely few ratings suffer most severely from data sparsity. The
AdaMF model is particularly effective on those sparsity entities. To
show this, we categorize movies in the MovieLens-Netflix dataset
into three sparsity levels: “cold” movies with 100 or less ratings in
a context, “normal” movies with 100− 1, 000 ratings, and “warm”
movies with more than 1, 000 ratings. In this way, a movie can be
warm in MovieLens and normal in Netflix. In total, 7 label con-
figurations are observed, leaving two empty zones, since no warm
movies in MovieLens are observed cold in Netflix and vice versa.
Figure 4(a) reports the RMSE of prediction on MovieLens (target
context), leveraging ratings in Netflix (auxiliary context). In most
configurations, standard matrix factorization performs the worst.
CMF slightly reduces RMSE on movies that are cold (bottom row)
and normal (middle row), but performs even worse on movies la-
beled warm (top row). That might be due to that it does no good to
incorporate external ratings for items with sufficient ratings in the
target context. HeteroMF outperforms MF and CMF on movies la-
beled “normal” and “warm” in the target context (middle and right
column), but shows modest advantage on movies labeled “cold” in
the target context (left column), implying that a fixed form of trans-
fer matrix sharing mechanism as done in HeteroMF does harm to
items sparse in the target context. In contrast, AdaMF consistently
shows significant advantage on every configuration, demonstrating
that AdaMF works well in any sparse level. Figure 4(b) reports
prediction RMSE on Netflix, exhibiting similar results.

5.3 Case Analysis
To offer some intuition about why adaMF works well, we present

three typical cases in Figure 5. The first movie is ‘Love is all there
is’ that receives sparse ratings in both contexts forming a cold-cold
case. ‘Hellfighter’ is sparse in MovieLens but warm in Netflix,
forming a cold-warm case. ‘Titanic’ receives plenty of ratings in
both contexts forming a warm-warm case. From the perspective of
model complexity, a simple model works well when few ratings are
available, and a complex model captures more detailed information
with a large dataset. Therefore, as the simplest model, CMF uses
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Table 5: RMSE on Douban dataset
Scenario

D Models Movie-Music Movie-Book Book-Music

20

MF 0.7219 0.6933 0.7219 0.7630 0.7630 0.6933
CMF 0.7277 (+0.80%) 0.6868 (-0.94%) 0.7324 (+1.45%) 0.7460 (-2.22%) 0.7531 (-1.30%) 0.6953 (+0.29%)

HeteroMF 0.7210 (-0.12%) 0.6869 (-0.92%) 0.7215 (-0.05%) 0.7593 (-0.48%) 0.7552 (-1.02%) 0.6943 (+0.14%)
AdaMF 0.7199* (-0.28%) 0.6860* (-1.05%) 0.7210* (-0.12%) 0.7455** (-2.29%) 0.7466** (-2.15%) 0.6871** (-0.90%)

50

MF 0.7187 0.6902 0.7187 0.7600 0.7600 0.6902
CMF 0.7252 (+0.90%) 0.6840 (-0.90%) 0.7284 (+1.35%) 0.7411 (-2.49%) 0.7495 (-1.38%) 0.6922 (+0.29%)

HeteroMF 0.7155 (-0.45%) 0.6835 (-0.97%) 0.7182 (-0.07%) 0.7563 (-0.49%) 0.7482 (-1.55%) 0.6910 (+0.12%)
AdaMF 0.7130* (-0.79%) 0.6807** (-1.38%) 0.7167* (-0.28%) 0.7421** (-2.36%) 0.7451* (-1.96%) 0.6841** (-0.88%)

100

MF 0.7152 0.6888 0.7152 0.7555 0.7555 0.6888
CMF 0.7202 (+0.70%) 0.6811 (-1.12%) 0.7254 (+1.42%) 0.7389 (-2.20%) 0.7480 (-1.00%) 0.6917 (+0.42%)

HeteroMF 0.7135(-0.24%) 0.6806 (-1.19%) 0.7140 (-0.17%) 0.7550 (-0.07%) 0.7471 (-1.11%) 0.6882 (-0.09%)
AdaMF 0.7101** (-0.71%) 0.6775** (-1.64%) 0.7101** (-0.71%) 0.7370** (-2.45%) 0.7440* (-1.52%) 0.6813** (-1.09%)

Significantly outperforms HeteroMF at the: ** 0.01 and * 0.05 level, paired t-test

Table 6: MAP on Douban dataset
Scenario

D Models Movie-Music Movie-Book Book-Music

20

MF 0.8026 0.8890 0.8026 0.8840 0.8840 0.8890
CMF 0.8020 (-0.07%) 0.8910 (+0.22%) 0.8021 (-0.06%) 0.8950 (+1.24%) 0.8889 (+0.55%) 0.8887 (-0.03%)

HeteroMF 0.8040 (+0.17%) 0.8908 (+0.20%) 0.8011 (-0.19%) 0.8876 (+0.41%) 0.8872 (+0.36%) 0.8889 (-0.01%)
AdaMF 0.8075** (+0.61%) 0.9054** (+1.84%) 0.8058** (+0.40%) 0.8990** (+1.70%) 0.8942** (+1.15%) 0.9011** (+1.36%)

50

MF 0.8060 0.8908 0.8060 0.8873 0.8873 0.8908
CMF 0.8050 (-0.12%) 0.8930 (+0.25%) 0.8055 (-0.06%) 0.8989 (+1.31%) 0.8919 (+0.52%) 0.8912 (+0.04%)

HeteroMF 0.8078 (+0.22%) 0.8947 (+0.44%) 0.8065 (+0.06%) 0.8904 (+0.35%) 0.8907 (+0.38%) 0.8915 (+0.08%)
AdaMF 0.8119** (+0.73%) 0.9096** (+2.11%) 0.8105** (+0.56%) 0.8993** (+1.35%) 0.8990** (+1.31%) 0.9050** (+1.59%)

100

MF 0.8093 0.8928 0.8093 0.8901 0.8901 0.8928
CMF 0.8081 (-0.15%) 0.8955 (+0.30%) 0.8075 (-0.22%) 0.9022 (+1.36%) 0.8943 (+0.47%) 0.8930 (+0.02%)

HeteroMF 0.8092 (-0.01%) 0.8969 (+0.46%) 0.8090 (-0.04%) 0.8915 (+0.16%) 0.8931 (+0.34%) 0.8932 (+0.04%)
AdaMF 0.8130** (+0.46%) 0.9115** (+2.09%) 0.8175** (+1.01%) 0.9043** (+1.60%) 0.9020** (+1.34%) 0.9081** (+1.71%)

Significantly outperforms HeteroMF at the: ** 0.01 and * 0.05 level, paired t-test

an identical latent factor to represent all occurrences of a movie on
different contexts, and not surprisingly outperforms MF and Het-
eroMF when predicting the first movie and the sparse side of the
second movie. On the other hand, HeteroMF builds a complex
model to describe specific behaviors of a movie in multiple con-
texts, and significantly outperforms CMF for the third movie and
the rich side of the second movie. Due to the different applicability
of simple and complex models, no baseline consistently perform
well in all levels of sparsity. Noticeably, with a flexible parameter
to adjust the weight of a global latent factor and a context-specific
one, our model actually gains the ability to adaptively fit different
levels of sparsity, and as a result outperforms baselines on all three
typical cases.

5.4 Mixture Parameters
In AdaMF model, context-entity mixture parameter reflects the

balance between entity-intrinsic factor and context-specific factor.
One interesting question is: what is the distribution of the values of
this mixture parameter over all users/items? As shown in Figure 6,
for most movies the mixture parameters locate within [0.4, 0.6],
indicating that an entity’s intrinsic attributes play almost the same
important role in producing preference with the context-specific at-
tributes.

Table 7 shows the mixture parameters for the three movies, stud-
ied in the aforementioned case analysis. For movie ‘Love is all
there is’, mixture parameters are small in both contexts. In this
case, entity-intrinsic factors are more critical than context-specific
factors. For movie ‘Hellfighter’, the mixture parameter is small in
the “cold” context but large in the “warm” context, indicating that
the AdaMF indeed adaptively capture the degree to which context
influences rating. For movie ‘Titanic’, a “warm-warm” case, the

mixture parameter in both contexts is larger than 0.5, indicating
that context matters much more. As above, the diversity of mix-
ture parameters reveal the necessity to develop an adaptive method
rather than a fixed form as done in HeteroMF.

5.5 Model Complexity
We now discuss the issue of model complexity. To this end, we

list the number of effective parameters for all the multi-context rec-
ommendation models discussed in this paper. We assume that there
areM users, N items, and l contexts. We denote with d the dimen-
sion of latent factors. For CMF, the effective number is (M+N)∗d.
For HeteroMF, the effective number is (M+N)∗d+d∗d∗l. For our
AdaMF, the effective number is (M+N)∗d+(M+N)∗d∗l. We
can see that HeteroMF and AdaMF are more complex than CMF
since the two models attempt to model context-specific factors in
different schemas. HeteroMF simply assumes that each context
indiscriminately affects all entities, reflected by a transfer matrix.
AdaMF aims to adaptively capture the influence of context through
a context-entity mixture matrix.

Note that the main superiority of AdaMF over other competing
models is its flexibility at adaptively capturing the degree that each
context exerts on each entity. As such, AdaMF achieves consistent

Table 7: Mixture parameter learned in the two contexts.

Movie Name Context
MovieLens Netflix

Love is all there is 0.260 0.330
Hellfighters 0.045 0.821

Titanic 0.601 0.560
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Figure 4: Rating prediction accuracy of movies with different
sparse levels.

improvements for entities at all sparsity levels, i.e., cold, normal,
and warm (Figure 4). This consistent improvement is particularly
important for a real recommender system, since such a system ex-
hibits reliable performance than systems that work better on some
cases but worse on others. Perhaps, some people may argue that
the improvement of the AdaMF is marginal, compared with Het-
eroMF. Indeed, the main point of this paper is that AdaMF could
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Figure 5: Performance in different sparse levels (a) Cold-cold
case: movie ‘Love is all there is’ has 23 ratings in MovieLens
dataset and 32 ratings in Netflix dataset; (b) Cold-warm case:
movie ‘Hellfighter’ has 16 ratings in MovieLens dataset and 455
ratings in Netflix dataset; (c) Warm-warm case: movie ‘Titanic’
has 27550 ratings in MovieLens dataset and 21234 ratings in
Netflix dataset.

consistently improve multi-context recommendation by adaptively
balancing the entity-intrinsic factor and context-specific factor. Its
gain deserves its cost.

6. CONCLUSIONS AND DISCUSSIONS
Data sparsity is one of the challenges for recommender system.

Lack of relevant information for users and items is the key issue for
data sparsity problem. In the real world, users (items) are involved
in multiple contexts but not isolated. In this paper, we propose a
context-adaptive matrix factorization method for multi-context rec-
ommendation problem via simultaneously modeling context-specific
factors and entity-intrinsic factors in a unified model. We learn for
every entity an entity-intrinsic latent factor and a context-specific
latent factor in each context. Meanwhile, using a context-entity
mixture parameter we explicitly model the degree to which each
context imposes influence on each entity. We performed experi-
ments on two real scenarios, an item-aligned movie dataset and a
user-aligned online social network, demonstrating that our model
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Figure 6: Distribution of mixture parameters.

is better than the baseline models on all sparsity level. As future
work, we will extend the AdaMF model to heterogenous networks
containing contexts with various types.
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