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For the study of information propagation, one fundamental problem is uncovering universal laws governing
the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as
estimating the propagation probability that a piece of information propagates from one individual to
another. Such a propagation probability generally depends on two major classes of factors: the intrinsic
attractiveness of information and the interactions between individuals. Despite the fact that the temporal
effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear,
causing inaccurate prediction of information propagation on evolving social networks. In this report, we
empirically study the dynamics of information propagation, using the dataset from a population-scale social
media website. We discover a temporal scaling in information propagation: the probability a message
propagates between two individuals decays with the length of time latency since their latest interaction,
obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate
future propagation probabilities between individuals, reducing the error rate of information propagation
prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

I
n recent years, information propagation on social networks has been attracting much attention from academia
and industry1–9. Understanding the mechanisms of information propagation, with or without exogenous and
endogenous factors, is a fundamental task to uncover the universal laws governing the process of information

propagation, which is important for better explaining the dynamics of information propagation10, predicting
information popularity11, and initiating viral marketing campaign12–16. This task, from the microscopic perspec-
tive, is formulated as inferring and estimating the propagation probability that a piece of information propagates
from one individual to another along social links connecting them.

The difficulty of estimating propagation probability lies in the complex interaction pattern between individuals
and the co-existence of various confounding factors, such as the interplay between social selection and social
influence. Previous studies empirically identified two classes of factors that drive information propagation: the
attractiveness of information and the interactions between individuals. Existing studies on the first class mainly
discussed three fundamental mechanisms with respect to message attractiveness17: the time-invariant intrinsic
attractiveness or fitness18,19, the Matthew effect in the popularity accumulation17, and the freshness of messages
decaying in a power-law20, exponential21,22, Rayleigh23,24, or log-normal17 manner with respect to the time span
since the message is posted25. In contrast, most conventional studies on the second class were limited to static or
quasi-static scenarios, assuming time-invariant interactions between any pair of individuals. Researchers esti-
mated a propagation probability by indifferently aggregating recent and long-ago interactions21,26, or by learning a
probability function with static features including structural characteristics of the underlying network11,27–29,
demographic features30, and topical and contextual features31–33. Few studies explored the possibility that indi-
vidual interactions change with time. A recent study modeled social influence as a Markovian chain on temporally
sliced snapshots of a social network, but did not reveal the intrinsic temporal scaling how social influence
evolved34.

Actually, most real-world social networks are far from static. On evolving social networks, whether a piece of
information will be propagated is more related to instant frequency of individual interactions rather than
average frequency indifferently aggregated over recent and long-ago interactions. Hence, it is problematic to
neglect the dynamic nature of individual interactions and its crucial role at information propagation, leading to
inaccurate predictions. A possible solution is working only on recent interactions based on temporally sliced
snapshots of interactions. However, it is hard to determine the appropriate temporal scale of snapshots since the
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frequency of interactions is scale-free35. Therefore, we lack a full
understanding about the temporal scaling of information pro-
pagation, which is crucial to grasp the propagation dynamics of
information.

In this report, we study whether and how individual interactions
vary temporally and their role at predicting the instant propagation
probability. Intuitively, a high frequency of recent communication
implies strong instant interaction and a high propagation probabil-
ity. As the delegate of recency, latency is defined as the idle time since
the latest communication between two individuals. A long latency
generally reflects a low tendency of future interaction. Thus analyz-
ing the interdependence between the latency and the trend of a
propagation probability provides us a peculiar delegate for under-
standing the temporal effect of information propagation. With this
delegate, we study on a population-scale social media dataset and
conduct an empirical validation for the intuition that a longer latency
indicates a relatively lower instant propagation probability.

To focus on analyzing the temporal scaling of propagation prob-
abilities from the perspective of individual interactions, in this report
we do not consider the factors of information attractiveness, and
instead calculate a propagation probability between two individuals
as the ratio of retweeted and neglected messages that are propagated
from one to another. This methodology is reasonable when the num-
ber of messages is sufficient to largely average out information attrac-
tiveness. In this way the temporal scaling of information propagation
fully reflects the temporal scaling of individual interactions.

Results
The studies are based on a publicly available dataset (WISE 2012
Challenge, http://www.wise2012.cs.ucy.ac.cy/challenge.html) col-
lected from Sina Weibo, the largest Chinese micro blogging website,
like Twitter. In the dataset with some simple preprocessing (see
Section S1), half a million users created 1.2 million following rela-
tions among them, providing channels for propagation of 8 million
messages. We denote with an edge (vi, vj) the relation that a user vj

(called the follower) follows another user vi (called the followee). Each
time vj sees a message k posted or retweeted by vi that vj has not
retweeted before, we say di,j,k 5 1 if vj retweets k, forming a positive
example indicating vi successfully activates vj to retweet k; otherwise
di,j,k 5 0 for a negative example if vj neglects k. For each positive/
negative example, we measure the latency ti,j,k as the time span since
the latest time vj retweets a message from vi.

We start to explore the temporal scaling of information propaga-
tion by examining time stamps of positive examples on two ran-
domly selected edges, a followee and two of his followers. Figure 1a
and Figure 1b reveal a non-uniform density of positive examples that
the followers frequently retweet messages from the followee in sev-
eral short time periods, separated by long idle periods. This implies a
burst phenomenon on individual interactions: short time frames of
intense interactions are separated by long idle periods35. To provide a
solid evidence for the existence of burst in retweeting behaviors, we
depict in Figure 1e the distribution of latency of all positive examples.
The power-law distribution of latency, reflecting the emergence of
bursty retweeting behaviors, exhibits the temporal nature of indi-
vidual interactions. Note that static individual interactions lead to
a time-invariant propagation probability on each edge in this scen-
ario, which views retweeting behaviors as a homogeneous Poisson
process, resulting in an exponential distribution of latency.

The temporal nature of individual interactions results in a neces-
sity to assign a unique propagation probability to every retweeting/
neglecting behavior even occurred on the same edge, reflecting the
instant tendency that a follower retweets a followee’s message at the
time that message arrives. To uncover the temporal scaling of instant
propagation probabilities, we investigate the interdependence be-
tween the propagation probability behind every retweeting/neglect-
ing behavior and the latency associated with it. The interdependence

is suggested by the distribution of retweeting/neglecting behaviors on
those two edges against associated latency, where most retweeting
behaviors occur with short latency (Figure 1c and 1d). We calculate
the ratio of retweeting and neglecting behaviors over all edges to
estimate the invisible instant propagation probability given certain
latency. The propagation probability decreases with the latency in a
power-law manner (Figure 1f). Fitting the log-log curve in Figure 1f
produces a consistently decaying speed of 20.71 slope, suggesting the
temporal scaling between a propagation probability Pr(d 5 1) behind
a retweeting/neglecting behavior and its associated latency t as follows,

Pr di,j,k~1
� �

!t{0:71
i,j,k : ð1Þ

We further study whether retweeting behaviors on different edges
share the same power exponent, governing the temporal scaling. As
shown in Figure 1a–d, although the retweeting behaviors on the two
edges both obey the power-law temporal scaling, the power exponents
are quite different. Therefore, we need to assign an edge-specific expo-
nent on each edge, in order to model the temporal scaling of informa-
tion propagation on various edges of social networks.

Motivated by the observed temporal scaling, we propose a tem-
poral model, namely Decay model, to predict propagation probabil-
ity. We evaluate the performance of the model by applying it to
predict retweeting behaviors and to launch a viral marketing strategy,
compared with four mainstream baselines, namely MLE, EM26, Static
Bernoulli21, and Static PC Bernoulli21.

The first evaluation experiment measures the probability a model
correctly predicts whether or not an individual will retweet an
incoming message. Figure 2a reports AUC, the area under the
Receiver Operating Characteristic (ROC) curve, equivalent to the
probability that a classifier correctly distinguishes a positive example
from a negative one. The Decay model outperforms all baselines,
raising AUC from 93.3% to 97.4%. Intuitively speaking, when facing
a randomly selected pair of a retweeting behavior and a neglecting
behavior, the error rate to incorrectly distinguish them is reduced by
a half by the Decay model over the best baseline. We then report the
perplexity on the testing set against the training set ratio to obtain the
probability that a model, trained with incomplete observations, cor-
rectly generates the testing examples. As shown in Figure 2b, the
Decay model achieves the lowest (best) perplexity among all tested
models. The priority of the Decay model is consistent in all examined
training set ratios, with a more significant improvement on a rela-
tively smaller training set. We also evaluate the Decay model with
ROC curve, which is a metric appropriate for extremely imbalanced
datasets such as the one we use in this report (as well as most real-
world social media) where positive examples occupy less than 1%.
ROC, measuring the sensitivity (true positive rate) against specificity
(one minus false positive rate), is insensitive to the ratio between
positive and negative examples. Figure 2c reports the ROC curves
of the Decay model and baselines with 90% examples held out as the
training set. Results of other training set ratios are similar. The figure
shows that the Decay model achieves the best capability at distin-
guishing retweeting behaviors from neglecting behaviors with a sig-
nificant improvement upon all baselines.

The second evaluation measures the accuracy a model predicts
propagation probabilities. Intuitively, predictions that are more accur-
ate would help select a better initial seed set, triggering a larger fraction
of individuals. We split all examples into 4 groups in a chronological
order with respect to example time stamps. Each group contains
examples in 30 weeks (see Section S6 for details). The Decay model
and baselines train on examples in the earlier 205 days (training
phase) and predict the propagation probabilities in the last 5 days
(evaluation phase). Based on those predictions, a state-of-the-art influ-
ence maximization algorithm (CELF1115) is used to select an initial
seed set maximizing the expected eventual influence spread. We then
estimate the pseudo actual spread of such a seed set as the number of
nodes reachable from the seed set on a propagation network, which is
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a subgraph of the social network consisting of edges with at least one
actual retweeting behavior in the last 5 days. As reported in Figure 2d
(one group shown only), the largest pseudo actual spread comes from
the seed set selected on propagation probabilities predicted by the
Decay model, which eventually reaches 2,590 nodes, achieving a
9.7% increase upon what is reached by the best baseline, i.e., Static
PC Bernoulli which reaches 2,361 nodes. The increase in pseudo
actual spread demonstrates the advantage that the Decay model more
accurately predicts the propagation probabilities, confirming our find-
ing that individual interactions decay with latency.

Discussion
In this report, we uncovered the temporal scaling in information
propagation from the perspective of individual interactions: a

propagation probability decays slowly in a power-law manner with
the latency since their latest interaction. Such a dynamic nature was
demonstrated by empirical studies on a large-scale public social
media dataset, showing the power-law interdependence between a
propagation probability and latency.

With the observed temporal scaling, a Decay model was proposed
to predict future propagation probability among individuals, incorp-
orating a time-invariant base probability and a time-decaying expo-
nent on each edge. The model is applicable in scenarios where an
underlying social network and tractable information propagation
with time stamps are observed, such as micro blogging (Twitter
and Sina Weibo), blog sites, book sharing sites and email promotion
networks. Empirical evaluations supported that the Decay model out-
performed mainstream baselines in predicting retweeting behaviors,
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Latency (days)

Date

Latency (days)

Date

Figure 1 | Characterizing propagation probabilities. (a,b) Time stamps of positive examples (retweeting behaviors) on two random edges. Each vertical

line represents a retweeting behaviors occurring with the time stamp marked on the horizontal axis. (c,d) Positive (retweeting) and negative (neglecting)

examples on those two edges. Vertical lines in upper half represent positive examples, while those in lower half represent negative ones. It shows an

obvious tendency that most positive examples are concentrated on the left zone, i.e., most retweeting behaviors occur with short latency. The tendency is

stronger on (c) than that on (d). (e) Distribution of latency of retweeting behaviors over all edges. (f) Ratio of positive examples upon all examples on all

edges with respect to the associated latency, demonstrating the power-law interdependence between the propagation probability and the latency.
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significantly reducing by a half the expected error rate of incorrectly
identifying a retweeting behavior.

From the perspective of machine learning, the discovered tem-
poral scaling provides an additional feature to estimate propagation
probability. While traditional models assume static propagation
probability, the proposed Decay model additionally explores the
temporal effect of a propagation probability, explaining the increased
accuracy. Generally speaking, a model with more features requiring
more data for training suffers severe over-fitting problem on sparse
data. This partly explains why traditional models do not consider
temporal features. In order to reduce the pain of sparsity, the Decay
model introduces a prior distribution of the decaying exponent p(a),
suggested by the global decaying exponent in empirical study results.
The prior distribution successfully reduces the pain of sparsity: the
improvement of the Decay model upon baselines is even more sig-
nificant with a relatively smaller training set (Figure 2a and 2b). Note
that typically only several retweeting behaviors are observed on an
edge in a real-world scenario, the outstanding performance of the
Decay model on sparse data is of great importance in practice.

It is worth noting that the viral marketing evaluation is not con-
ducted using Monte Carlo simulations, as done in most influence
maximization studies. That is because what we compare is the

configurations of propagation probabilities estimated with various
model, and thus it is unfair to run Monte Carlo simulations with any
estimated configuration, otherwise estimating all probabilities equal
to one will surely win. Instead, we estimate the propagation spread in
a pseudo-actual way. We build a propagation network, a subgraph of
the social network, with edges where at least one retweeting behavior
occurs in the 5-day evaluation phase. Therefore the reachability of a
node on the propagation network measures its pseudo actual influ-
ence spread during that 5 days. It is equivalent to one Monte Carlo
simulation that is produced from the (unknown) actual individuals
and observed by actual retweeting behaviors. The estimated propaga-
tion spread is deterministic without any random deviation.

In the Decay model, the base probability q is considered as a free
variable whose value is fully determined by maximum-a-posteriori
inference with a prior distribution. In fact, the Decay model can
certainly incorporate any endogenous or exogenous factors through
rewriting q as a function of those factors, such as demographical,
structural, content and context features. Parameters of such a func-
tion could also be estimated in maximum-a-posteriori inference.

In the first evaluation experiment, the Decay model is tested with
only one testing example on each edge, for the ease of calculating
latency. When facing multiple testing examples (e.g., predicting
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Figure 2 | Model evaluation. (a) AUC of the Decay model and baselines. AUC measures the area under the ROC curves, and thus is equivalent to the

probability that a trained model correctly distinguish a randomly selected positive example from another randomly selected negative example. (b) Perplexity

of the Decay model and baselines when predicting retweeting behaviors, against the training set ratio. A lower perplexity indicates a better prediction

accuracy, meaning less extent a testing example surprises a trained model. (c) Receiver Operating Characteristic (ROC) curves with a training set of 90%

examples. (d) Influence spreads of an initial seed set selected on propagation probabilities predicted by the Decay model and baselines.
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whether an individual will retweet a series of messages in a month),
one should predict those examples one by one in a chronological
order and calculate the expected latency of a later example over the
joint probability distribution of predicted results of all previous test-
ing examples.

Choosing the latency as a delegate of recency is equivalent to
approximating the information propagation occurrences as a first
order Markov process, i.e., only the idle time since the latest inter-
action, instead of all historical interactions, affects the current
decision. Such an approximation, effectively avoiding expensive cal-
culation with an nondeterministic number of parameters required to
build a complicated function defined on all historical interactions,
succeeds in revealing strong evidence of interdependence between
propagation probabilities and latency and in building an outper-
forming prediction model. That supports the important role that
the temporal scaling plays in characterizing a propagation
probability.

As an open question in future, it would be attractive to character-
izing influential nodes identified with high propagation probabilities
estimated by the Decay model, and to demonstrate the evolving
distribution of instant influential nodes on a social network.

Methods
The proposed Decay model describes the propagation probability P(di,j,k 5 1), that an
individual vi will successfully activate another individual vj to retweet a message k,
which is believed to be determined by two factors:

. qi,j g [0, 1]: the base probability associated with the edge (vi, vj);

. ti,j,k g [1, 1‘): latency, the time span since the latest time vi activated vj, i.e.,
ti,j,k~tk,i{tk’,j, where tk,i is the time stamp when vi posts or retweets k, and k9 is

the latest message before k that vi activates vj to retweet.

Specifically, the propagation probability is as follows,

P di,j,k~1
� �

~qi,jt
{ai,j

i,j,k , ð2Þ

where ai,j . 0 is a decaying exponent associated with the edge (vi, vj). The decaying
exponent is edge-specific, with a prior distribution p(a) reflecting the global decaying
exponent. Traditional models without temporal scaling of propagation probabilities
can be viewed as special cases of the Decay model with constant a 5 0.

Latency is required to be bounded, i.e., t $ 1, to guarantee P(di,j,k 5 1) g [0, 1].
Specifically, ti,j,k 5 1 results in that qi,jt

{ai,j

i,j,k ~qi,j, revealing the intuitive meaning of
the base probability that qi,j equals to the probability vi successfully activate vj to
retweet a message k which arrives immediately after a previous successful activation.

The hidden parameters q and a are inferred with a maximum-a-posteriori estimate
with prior distributions p(q) and p(a). See Section S3 for details.

To demonstrate the performance of the Decay model, four mainstream baselines
are implemented to estimate and predict propagation probabilities on all edges,
including MLE, EM26, Static Bernoulli21, and Static PC Bernoulli21 (see Section S4).
Some other widely used models are not compared because those models require user
profiles or message content that are absent in this scenario.

In the retweeting prediction experiment, we apply a next-one strategy to split a
training set and a testing set. On each edge, we sort all examples in a chronological
order, take the earliest N% examples as the training set, and leave the next one
example as the testing set. Thus the size of the training set increases with N%, the
training set ratio, while the size of the testing set is a constant equal to the number of
edges. With parameters trained on the training set, the Decay model predicts the label
d of examples in the testing set.

The evaluation metrics include perplexity, ROC curve and AUC. The perplexity
measures how the testing examples surprise a trained model. A lower perplexity
demonstrates better prediction ability.

perplexity~e{

P
vi ,vj ,kf g[Dtest

di,j,k ln ~P di,j,k ~1ð Þz 1{di,j,kð Þ ln 1{~P di,j,k~1ð Þð Þ
Dtestj j : ð3Þ

where Dtest represents the testing set, and ~P di,j,k~1
� �

is the estimated propagation
probability. The Receiver Operating Characteristic (ROC) curve plots sensitivity (true
positive rate) against specificity (one minus false positive rate). AUC measures the
area under the Receiver Operating Characteristic curve, which is equivalent to the
probability that a model correctly distinguishes a randomly selected positive example
from a randomly selected negative example. A higher AUC indicates a better dis-
tinguish ability. See Section S5 for details.
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